,根据英伟达在 2023 年台北电脑展会上的演讲,该公司宣称其 GPU 可以大幅降低训练大型语言模型的成本和耗能。
英伟达首席执行官黄仁勋在演讲中,向 CPU 行业发起了挑战,他认为生成式人工智能和加速计算是未来计算的方向。他宣布传统的摩尔定律已经过时,未来的性能提升将主要来自生成式人工智能和基于加速计算的方法。
英伟达在展会上展示了一份 LLM 的总体拥有成本分析:首先,他们计算了训练一个 LLM 所需的 960 个 CPU 组成的服务器集群的完整成本(包括网络、机箱、互连等所有设备),发现这需要花费约 1000 万美元(IT之家备注:当前约 7070 万元人民币),并消耗 11 千兆瓦时的电力。
相比之下,如果保持成本不变,购买一个价值 1000 万美元的 GPU 集群,可以在同样的成本和更少的电力消耗下训练 44 个 LLM。如果转而保持电力消耗不变,那么可以通过 GPU 集群实现 150 倍的加速,以 11 千兆瓦时的电力消耗训练 150 个 LLM,但这需要花费 3400 万美元,此外这个集群的占地面积比 CPU 集群小得多。最后,如果只想训练一个 LLM,那么只需要一个价值 40 万美元、消耗 0.13 千兆瓦时电力的 GPU 服务器就可以了。
英伟达所要表达的意思是,相比 CPU 服务器,客户可以以 4% 的成本和 1.2% 的电力消耗来训练一个 LLM,这是一个巨大的成本节省。
郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。